
Unleashing the Power of the
Command-Line Interface

Jeremy W. Webb
jwwebb@ucdavis.edu

UC Davis
VLSI Computation Laboratory

2

Abstract

•  The development of complex ASIC or FPGA designs
involving multiple teams and loosely integrated tools is
an arduous process. There is an inherent challenge in
maintaining coherency and separation of source and
generated files throughout the build process, particularly
through different tool versions and vendors. These
aspects of the development process make results hard
to reproduce, reuse, and share. This paper highlights the
benefits of a command-line-based build environment as
an alternative to using graphical user interfaces (GUIs)
for RTL development. A well-reasoned directory structure
for projects is proposed, as well as a template for
command-line integration of ASIC or FPGA development
tools.

3

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

4

Motivation

5

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

6

Team Design

•  Directory Paths
–  Integrated Development Environments (IDEs)

typically use absolute paths
–  Command-line design flow uses relative paths

•  Portable design environment for design team

•  Revision Control Software
–  Distribute design throughout team
–  Some RCS tools provide a mechanism for ignoring

intermediate files

7

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

8

Directory Structure

•  Design Files

•  Flat Directory Structure

•  Semi-hierarchical Directory Structure

•  Hierarchical Directory Structure

9

Directory Structure
Design Files
•  HDL Modules

–  Multiple HDL files, IP Core Files

•  Synthesis Files
–  Tcl Scripts, Project Files, Log Files, Netlists

•  Back-End Tool Files
–  Project Files, Log Files, Netlists, Configuration Files

•  Simulation Files
–  Project Files, Waveform Files, Database Files

10

Directory Structure
Flat Structure

HDL
•  myfpga.sv
•  *.v, *.sv

Synthesis
•  myfpga.tcl
•  *.log, *.edf, *.ncf

Back-End
•  *.ngc,*.ngo,*.ncd
•  *.log, *.par, *.mrp

Simulation
•  *.do, *.sh, Makefile
•  *.db, *.log

Flat
Structure

11

Directory Structure
Semi-Hierarchical Structure

•  Separate directories for:
–  Source Files
–  Build Files

•  Scripts and generated
files collocated in build
directory making it
difficult to distinguish
between the two

.v
.sv

.bat
.exe

src/

build/

12

Directory Structure
Hierarchical Structure

•  Defined location for files improve efficiency
–  source files
–  synthesis builds
–  place and route builds
–  simulation projects
–  other miscellaneous files

•  Directory hierarchy generation can be
automated with scripts

13

Directory Structure
Hierarchical Example

14

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

15

Synthesis Flow

•  Synplify Pro is executed in batch mode using a
Tcl project file via a Makefile

•  Tcl project file uses relative paths to source files
located in ../myfpga/src/ directory

•  A script automates generation of source file list
from Tcl project file for use by the Makefile

•  Tcl callbacks (synhooks.tcl) copy EDIF and NCF
files to the build directory ../myfpga/par/run/

16

Synthesis Flow
Synthesis Makefile
PROJNAME := myfpga

Source Code:

SRCS :=$(shell ../bin/parsetcl.sh $(PROJNAME))

Environment Variables:

export SYN_TCL_HOOKS=../bin/synhooks.tcl

synthesize : $(SRCS)

 @echo "$(SRCS)”

 ../bin/outarch.sh $(PROJNAME) ../log ../out ../run
 synplify_pro -batch ../bin/$(PROJNAME).tcl

Set Project Name

Create Source File List

Enable Callback Functions

Perform Synthesis

17

Synthesis Flow
Example Synthesis Build
[jwwebb@darthbane ~]

$ cd ~/snug/git/myfpga/par/bin/
[jwwebb@darthbane ../git/myfpga/par/bin]

$ make setup
Executing: make setup

[jwwebb@darthbane ../git/myfpga/par/bin]

$ make synthesize
Executing: make synthesize

../../src/myfpga/myfpga.sv ../../src/in_buf/
in_buf.sv ../../src/out_buf/out_buf.sv

Loading ../bin/synhooks.tcl

Running proj_1|log
TCL script complete: "../bin/myfpga.tcl”

18

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

19

FPGA Implementation Flow

•  The FPGA implementation flow:
–  Netlist Translate
–  Mapping
–  Place and route
–  Timing Analysis
–  Configuration File Generation

•  Makefile automatically places report and log files
in a log directory and leaves intermediate files in
the run directory

20

FPGA Implementation Flow
Makefile Execution

•  Build is performed by three scripts located in
the ../myfpga/par/bin/ directory:
–  Makefile
–  par.xilinx.mk
–  outarch.sh

•  Build is performed in the ../myfpga/par/run/
directory in order to contain generated files

21

FPGA Implementation Flow
Makefile Targets
** Place and Route Build ****************************
targets:
 make archive - archive current build
 make setup - setup build
 make synthesize - synthesize chip
 make translate - translate chip
 make map - map chip
 make par - par chip
 make bit - generate bit file
 make prom - generate prom file
 make trace - run timing analyzer
 make sdf - generate post place & route files
 make download - program entire JTAG chain.
 make all - run all make targets
 make clean - clean current build folder

22

FPGA Implementation Flow
Example FPGA Build
[jwwebb@darthbane ~]

$ cd ~/snug/git/myfpga/par/bin/
[jwwebb@darthbane ../git/myfpga/par/bin]

$ make setup all
Executing: setup

Executing: make all

Launch Synthesizer
Launch NGDBUILD

Launch MAP

Launch PAR

Launch TRACE

Launch BITGEN
Launch PROMGEN

This build has finished

23

Outline

•  Motivation
•  Team Design
•  Directory Structure
•  Synthesis Flow
•  FPGA Implementation Flow
•  Summary

24

Summary

•  The suggested directory structure, and use of
command-line interface scripts and Makefiles,
can improve the FPGA or ASIC design efficiency
and promotes a team design flow.

•  The design flow is controlled such that all files
generated by both the design team and the tools
are stored in a known location.

•  The FPGA design flow parallels an ASIC design
flow.

